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Night 1: Parametric Curves and Motion
Quantitative Engineering Analysis

Spring 2019

1 Learning Goals

By the end of this assignment, you should feel confident with the
following:

• Visualizing parametric curves.

• Defining vector functions for a given curve.

• Computing relevant unit vectors like tangent, normal, and binor-
mal.

• Computing the curvature and torsion of a curve.

• Computing the length of a curve.

• Interpreting motion in terms of these concepts.

2 Overview and Orientation

In Module 1 we introduced the concept of parametric curves. We are
now going to return to this subject, but in a more general framework
using vectors and matrices and concepts from linear algebra.

This assignment draws from material in multivariable and vector
calculus, and any textbook in these subjects will have related mate-
rial. Keywords include parametric curves, curve length, and line
integral. Good sources include Paul’s Online Math Notes - the sec-
tion on Calculus III. The relevant Kahn videos are also useful.

Although you can evaluate the derivatives and integrals in this
assignment by hand, you can also use MATHEMATICA, and we
have provided a starter notebook for this purpose. We also provide
a starter MATLAB script to visualize the curve and the relevant unit
vectors.

3 Parametric Curves [2 Hrs]

In Module I we considered curves in the plane, represented by either
an explicit function, y = f (x) or x = f (y), an implicit function
f (x, y) = 0, or a set of parametric equations

x = f (u), y = g(u)
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where we treat u as a parameter. Each value of u defines a point
( f (u), g(u)) which we can plot. If we collect all the points defined by
u ∈ [a, b], then we get a parametric curve. In Module 1, we did not
limit ourselves to curves in the plane. For example, in 3D we defined

x = f (u), y = g(u), z = h(u)

and the collection of points so defined trace out a curve in 3D.
An alternative to these coordinate definitions involves representing

each point with a position vector, r(u). Since the position vector
depends on a single parameter u, the end of the position vector traces
out a curve in space. If we limit ourselves to 3D, we will usually use
the following notation

r(u) = x(u)ı̂ + y(u)̂ + z(u)k̂, u ∈ [a, b]

where ı̂, ̂, and k̂ are the standard Cartesian unit vectors. In a sense
the vector function r(u) lifts the interval [a, b] and deforms it in order
to produce a curve in space.

One major advantage of this notation is that we can take deriva-
tives of this vector function with respect to the parameter u

r′(u) =
d

du

(
x(u)ı̂ + y(u)̂ + z(u)k̂

)
,

= x′(u)ı̂ + y′(u)̂ + z′(u)k̂,

since the Cartesian unit vectors are constant. We can interpret the
derivative as follows: for any given value of u this vector is tangent to
the parametric curve. At times we might be more interested in a unit
tangent vector T̂, which we can obtain by normalizing the derivative

T̂ =
r′

|r′|

Since we can also interpret this vector in turn as a position vector,
taking its derivative should produce a vector normal to the tangent
vector, which we will define as the normal vector to the original
curve. The unit normal vector N̂ is therefore

N̂ =
T̂′

|T̂′|

Finally, we can use both the unit tangent vector and the unit normal
vector to define a unit binormal vector B̂ as follows

B̂ = T̂× N̂

Taken together, these three unit vectors forms an orthonormal basis
of 3D space. This is known as the Frenet-Serret frame, and some ap-
plications can be found on the Wikipedia page concerning Frenet-Serret

Formulas.
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In addition to these unit vectors, parametric curves in 2D and 3D
are often described in terms of their curvature κ and torsion τ. The
curvature is the normalized rate of change of the unit tangent vector

κ =
|T̂′|
|r′|

and measures how quickly a curve is changing direction - a large
value of the curvature means the curve is changing direction rapidly.
The curvature is always non-negative. A straight-line would have
zero curvature.

The torsion is the normalized rate of change of the unit binormal
vector in the direction opposite to the unit normal

τ = −N̂ · B̂′

|r′|

and measures the rate at which a curve is twisting out of the plane
- a large value of the torsion means the curve is rapidly twisting out
of the plane. A curve in the plane has zero torsion. The torsion can
be positive or negative, and convention dictates that a right-handed
curve has positive torsion.

Now that we know how to define a general parametric curve, we
are ready to compute with it. For example, we could compute the
length of the curve. In order to do so, let’s lay down a set of points
in the u-domain separated by ∆u. Each point is mapped to the space
curve, and the approximate length of each section of the curve is

∆L = |r′(u)|∆u

Refining this for smaller ∆u and then summing up the pieces results
in the integral

L =
∫ b

a
|r′(u)| du

which defines the length of the curve.
A common example is the parametric representation for a circle of

radius R, centered at the origin in the xy-plane. If we define

r(u) = R cos u ı̂ + R sin u ̂, u ∈ [0, 2π]

then the circle is traced out once in the counterclockwise direction
starting at (R, 0). In this way, we can identify the parameter u as
being the angle from the x-axis to a point on the circle.

Let’s compute the various unit tangent vectors, the curvature and
the torsion. The first derivative is

r′(u) = −R sin u ı̂ + R cos u ̂
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The unit tangent vector is

T̂ =
r′

|r′|
= − sin u ı̂ + cos u ̂

and is tangent to the circle. The unit normal vector is

N̂ =
T̂′

|T̂′|
= − cos u ı̂− sin u ̂

and is normal to the circle, pointing inward. The unit binormal vector
is

B̂ = T̂× N̂

= (− sin u ı̂ + cos u ̂)× (− cos u ı̂− sin u ̂)

= (sin2 u + cos2 u) k̂

= k̂

and is out of the plane of the circle. The curvature of the circle is

κ =
|T̂′|
|r′|

=
1
R

and is inversely proportional to the radius of the circle. The torsion of
the circle is

τ = −N̂ · B̂′

|r′|
= 0

is zero because the circle is a plane curve and the binormal vector is a
constant. For the length of the curve, we have

|r′(u)| = R

and the integral becomes

L =
∫ 2π

0
Rdu = 2πR

which is the circumference of a circle of radius R as expected!

Note: For the following problems, computing the various

vectors by hand can get very messy as the complexity of

the function increases. It is recommended you use Math-
ematica to find the expressions for each vector symboli-
cally, and use Mathematica for visualization.
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Exercise (1) Find a vector function r(u) in the plane whose trace is a circle
centered at (x0, y0) with radius R.

(a) Visualize the circle for different centers and radii.

(b) What is the unit tangent vector?

(c) What is the unit normal vector?

(d) What is the unit binormal vector?

(e) What is the curvature and torsion?

(f) Set up the integral to compute the perimeter of the circle, and
evaluate it.

(g) Visualize the curve and the unit vectors in MATLAB.

This is an introductory question designed to get you comfortable
building a vector function. We already examined the vector func-
tion for a circle centered at the origin, so modifying it for a circle
centered somewhere else should not be too complicated. The var-
ious vectors should be straightforward, the curvature and torsion
shouldn’t depend on where the circle is centered, and you should
know what the length of the curve is going to be.

Exercise (2) Find a vector function r(u) in the plane whose trace is an ellipse
centered at (x0, y0) with semi-major axis a, and semi-minor axis b,
b < a.

(a) Visualize the ellipse for different centers and semi-major and
semi-minor axes.

(b) What is the unit tangent vector?

(c) What is the unit normal vector?

(d) What is the unit binormal vector?

(e) What is the curvature and torsion?

(f) Set up the integral to compute the perimeter of the ellipse, and
numerically evaluate it for a specific case of (x0, y0), a, b.

(g) Visualize the curve and the unit vectors in MATLAB.

This question is designed to extend your ability to define a vector
function. You already defined the vector function for a circle, so
modifying it for an ellipse should not be too complicated. Although
the various vectors are straightforward to define, nothing will really
simplify and you will want to visualize your results. Although it
is not hard to setup the integral to compute the perimeter of the
ellipse you will find that the integral involves elliptic integrals
which cannot be evaluated using elementary functions. Check out
this page at the American Mathematical Society for an interesting
review.

http://www.ams.org/notices/201208/rtx120801094p.pdf
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Exercise (3) A helix in 3D can be defined by the vector function

r(u) = a cos u ı̂ + a sin u ̂ + bu k̂, a > 0, b > 0, u ≥ 0

(a) Visualize this curve for different values of a and b.

(b) What is the unit tangent vector?

(c) What is the unit normal vector?

(d) What is the unit binormal vector?

(e) What is the curvature and torsion?

(f) Set up the integral to compute the length of the helix corre-
sponding to 5 complete turns, and evaluate it.

(g) Visualize the curve and the unit vectors in MATLAB.

So far we have been limited to the plane, and we need an example
in 3D. The helix is about as basic and important as it comes, and
shows up in all sorts of places. Visualizing the unit vectors associ-
ated with the curve is more challenging because they live in 3D, and
we are asking you to define the domain so that the helix completes
5 turns. You should also find that the curvature and torsion of the
helix are constant, and indeed any space curve with constant curva-
ture and torsion is an helix. We often define a helix in terms of its
radius a, and its pitch 2πb, which is the height of the helix after one
complete turn.
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4 Motion of Bodies [2 Hrs]

So far we’ve been talking about the intrinsic geometry of curves.
However, there is an intimate connection between the geometry of
curves and the motion of bodies.

Assume a body is moving in space and is described by a position
vector r(t) defined in terms of a fixed laboratory frame. In compo-
nent form we write

r(t) = x(t)ı̂ + y(t)̂ + z(t)k̂

where t is time. The units of r(t) are length.
The derivative with respect to time of this position vector defines

the velocity of the body

v(t) = r′(t) = x′(t)ı̂ + y′(t)̂ + z′(t)k̂

and the second derivative with respect to time of this position vector
defines the acceleration of this body

a(t) = r′′(t) = x′′(t)ı̂ + y′′(t)̂ + z′′(t)k̂

It will be instructive now to ask how the velocity vector and ac-
celeration vector are oriented with respect to the path of the body
through space. If we treat t as a parameter, and view the motion of
the body as a parametric curve, then we can use the machinery of
parametric curves to answer this question.

Let’s start with the velocity vector. We know from our earlier work
that the derivative r′(t) is tangent to the curve, and it therefore makes
sense to express the velocity in terms of the unit tangent vector T̂

v(t) = v(t)T̂(t)

where v(t) is the linear speed of the body in the tangent direction,
and we explicitly note that T̂(t) is a function of t, i.e. the unit tangent
direction changes as we move along the curve.

What about the acceleration a(t)? If we take the derivative of the
velocity we see that

a(t) =
d
dt
(
v(t)T̂(t)

)
=

dv
dt

T̂ + v
dT̂
dt

Recall from earlier that the rate of change of the unit tangent vector is
related to the unit normal vector

dT̂
dt

= |T̂′|N̂
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and the magnitude of the rate of change of the unit tangent vector is
related to the curvature

|T̂′| = κ|r′|

Since |r′| = v we have
dT̂
dt

= κvN̂

so that the acceleration becomes

a(t) =
dv
dt

T̂ + κv2N̂

Let’s pause for a moment to consider this. We have expressed the
acceleration of a moving body in terms of the unit tangent vector
and the unit normal vector, so we will often talk about the tangential
acceleration and normal acceleration of a body. The magnitude of
the tangential acceleration is just the rate of change of the linear
speed. On the other hand, the magnitude of the normal acceleration
is proportional to the square of the linear speed and the curvature of
the path along which the body is moving.

Consider the example of a body moving in a circle of radius R at
some constant linear speed v. What is the position vector for such a
body? Well, we know that it should look like a parametric circle, so
let’s define

x = R cos(ωt)

y = R sin(ωt)

where ω is a variable that we need to define. In vector notation we
have

r(t) = R cos(ωt)ı̂ + R sin(ωt)̂

so that the velocity vector is

v(t) = −Rω sin(ωt)ı̂ + Rω cos(ωt)̂

which is always tangential to the circle and has magnitude v given by

v = Rω

so that the velocity can be expressed as

v(t) = RωT̂

where the unit tangent vector T̂ is simply

T̂ = − sin(ωt)ı̂ + cos(ωt)̂

We should now recognize ω as the angular velocity of the body as it
moves in uniform circular motion. The acceleration vector is

a(t) = −Rω2 cos(ωt)ı̂− Rω2 sin(ωt)̂
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which is always normal to the circle and has magnitude a given by

a = Rω2

so that the acceleration can be expressed as

a(t) = Rω2N̂

where the unit normal vector N̂ is simply

N̂ = − cos(ωt)ı̂− sin(ωt)̂

A body in uniform circular motion has no tangential component of
acceleration - it is purely normal. Using the earlier expression for the
angular velocity we could just as easily write the normal component
of the acceleration as

aN =
v2

R
which hopefully agrees with some results you saw a long time ago
in school. It also connects to our earlier expression since the normal
component of acceleration should be κv2, and κ = 1

R for a circle.

Exercise (4) Consider a body moving with the following position vector

r(t) = a cos(ct)ı̂ + b sin(ct)̂

where a > 0, b > 0, and c > 0. Assume that position is measured
in meters and time in seconds.

(a) Describe the path that the body takes. How long does it take
to return to its starting position? How far has it traveled in this
time?

(b) Determine the velocity of this moving body. How does the
linear speed depend on a, b, and c?

(c) Determine the acceleration of this moving body, and decompose
the acceleration into the unit tangent and unit normal direc-
tions.

(d) Visualize the motion in MATLAB.

Here we have a body moving on a path that corresponds to a curve
that we studied earlier, and so in many ways this is nothing new.
However, the motion of a body consists of both the path and "how"
it moves along it. Interpreting the velocity and acceleration in terms
of the variables a, b, and c will help you build your understanding
of these concepts. I highly recommend that you test your under-
standing by visualizing the motion in MATLAB last, i.e. build a
set of predictions, and then test them via your MATHEMATICA
implementation.
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Exercise (5) Consider a body moving in 3D with position vector

r(t) = a cos(ct)ı̂ + a sin(ct)̂ + bctk̂

Assume that the position is measured in meters and time is mea-
sured in seconds.

(a) Describe the path that the body takes. Interpret the variables a,
b, and c.

(b) Determine the velocity of this moving body. How does the
linear speed depend on a, b, and c?

(c) Determine the acceleration of this moving body, and decompose
the acceleration into the unit tangent and unit normal direc-
tions.

(d) Visualize the motion in MATLAB.

Here we have a body moving in 3D on a curve that we have seen be-
fore. Again, I highly recommend that you test your understanding
by visualizing the motion in MATHEMATICA last.


